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Harmonically trapped lattice bosons with strong repulsive interactions exhibit a superfluid-Mott-insulator
heterostructure in the form of a “wedding cake.” We discuss the mesoscopic aspects of such a system within
a one-dimensional scattering matrix approach and calculate the scattering properties of quasiparticles at a
superfluid-Mott-insulator interface as an elementary building block to describe transport phenomena across
such a boundary. We apply the formalism to determine the heat conductivity through a Mott layer, a quantity
relevant to describe thermalization processes in the optical lattice setup. We identify a critical hopping below
which the heat conductivity is strongly suppressed.
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I. INTRODUCTION

Cold bosonic gases subject to an optical lattice allow for
an accurate emulation of the Bose-Hubbard model of inter-
acting lattice bosons,1 with a short range �on-site� interaction
between bosons, a hopping restricted to nearest neighbors,
and no interband transitions, at least for sufficiently deep
lattice potentials. Furthermore, the system is almost perfectly
decoupled from environmental degrees of freedom during
typical experimental times. These aspects make cold atoms a
perfect test bed for probing lattice Hamiltonians relevant to
condensed matter physics.2

There is one feature, however, where cold atom systems
differ from the generic solid-state setup, as they typically
experience an inhomogeneous potential due to the trap, and
thus inferring bulk properties is often hampered by finite size
effects.3,4 On the other hand, as a result of this confinement,
new interesting structures and effects may occur, with the
“wedding cake” involving layers of Mott-insulating and su-
perfluid phases of strongly correlated bosons providing a
prominent example5,6 �cf. Fig. 1�a��. The evolution of the
ground state �gs� across this inhomogeneous system can be
easily understood within the framework of a local density
approximation combined with a mapping between the posi-
tion in the trap and the corresponding point in the bulk phase
diagram.7 The most pronounced new feature in this layered
structure is the superfluid-Mott-insulator �S-MI� interface.
Such boundaries between phases with different symmetries
are known to exhibit interesting effects; a well known ex-
ample is the phenomenon of Andreev reflection8 between a
normal metal and a superconductor, where electrons incident
on the superconductor from the normal metal are reflected
back in the form of a hole retracing the electron’s path.
Given the strongly correlated nature of the two phases fram-
ing the S-MI interface, similar interesting phenomena may
be expected in the present case. In this work, we provide a
description of the scattering properties of elementary excita-
tions at the S-MI interface. Such knowledge then allows us
to determine the energy �or heat� flow across interfaces, and
we determine the heat conductivity across the Mott-insulator
region connecting two superfluids.

Mesoscopic aspects in a wedding cake structure have
been studied by Vishveshwara and Lannert,9 who calculated

the Josephson coupling across a Mott-insulator domain �a
S-MI-S junction� supported by the overlap between exponen-
tially suppressed ground state wave functions �superfluid or-
der parameters� across the Mott phase. Here, we are inter-
ested in the scattering dynamics of the excitations near a
S-MI boundary and the transport associated with them across
one or multiple interfaces; these excitations are sound �Gold-
stone� and massive �Higgs� modes within the superfluid
phase and particle- and hole-type excitations in the Mott
insulator.10

After developing the general framework describing trans-
port in an inhomogeneous system with phase boundaries, we
calculate analytically the reflection and transmission coeffi-
cients for a phonon mode of the superfluid incident on a Mott
insulator �cf. Fig. 1�b��. While these coefficients can be used
to describe the scattering of a wave packet of phonons �a
density disturbance�, here they mainly serve as an illustration
of our approach. We then use our results �including those for
scattering of massive modes� to calculate the heat transport
through a Mott barrier. Knowledge of the heat conductivity �
allows to estimate the thermal contact between superfluid
shells in the wedding cake structure of a trapped Bose sys-
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FIG. 1. �a� One-dimensional model of a S-MI heterostructure in
a trap defined by the potential Vi at position i. The dark areas denote
Mott-insulating regions with a fixed density �i, while the bright
areas are superfluids of condensed particles �center, Sp� and con-
densed holes �wings, Sh�. �b� Sketch of a scattering event at the
superfluid-Mott-insulator interface, where a phonon incident from
the superfluid generates back-reflected quasiparticles of phonon-
and amplitude-type as well as particle- and hole-type excitations
transmitted into the Mott insulator.

PHYSICAL REVIEW B 79, 174504 �2009�

1098-0121/2009/79�17�/174504�10� ©2009 The American Physical Society174504-1

http://dx.doi.org/10.1103/PhysRevB.79.174504


tem. Note that temperature �actually entropy� imbalances
quite naturally occur in optical lattice systems as the lattice
potential is turned on and entropy is expelled from the newly
formed Mott-insulating regions.11 Our heat conductivity �
then relates to the thermalization process across different su-
perfluid rings.

Before developing our formalism in detail, we give an
overview of the ideas and concepts utilized in this paper. The
excitations close to one of the Mott-insulating lobes involve
coherent superpositions of various site occupation numbers,
and their wave functions are given by a four-spinor structure.
This is reminiscent of the two-spinor structure of excitations
in the Bogoliubov–de Gennes equations describing an inho-
mogeneous superconductor �note that for most unconven-
tional superconductors, the reduction to a two-spinor is
possible12�. The program to be carried out in order to find the
transmission, reflection, and transformation of quasiparticles
then is identical to the one introduced by Blonder et al.13 for
the superconductor-normal-metal boundary �in order to sim-
plify the analysis, we consider here a one-dimensional situ-
ation and leave geometric effects due to finite impact angles
for a later study�: First, we determine the excitation energies
��X�k� and the four-spinor structure X�k� for the quasiparti-
cle excitations in the superfluid �X=s ,m: sound and massive
modes� and in the Mott insulator �X=p ,h: particle and hole
modes�; below, this will be done for a translation invariant
situation in a second-quantized formalism. Second, we
switch to a first-quantized formulation and account for the
inhomogeneous setup; for a slowly varying potential
�Vi→V�y�� this can be done within a quasiclassical or
Wentzel-Kramers-Brillouin �WKB� approximation,14 with
the wave functions assuming the form

�X
� �y� =

1

��kX
� �y��

exp�i�y

dxkX
� �x�	X�kX

� �y�� . �1�

For a quasiparticle with energy �, the wave vector kX
� �y�

is obtained via proper inversion of the dispersion
��X�k��V�y��=�, where the potential V�y� enters the expres-
sion via a shift of the chemical potential, ��→��−V�y�.
Third, we account for different phases in the setup by calcu-
lating the transfer matrix across the interface15 via matching
of the wave functions and their derivatives at the boundary.
For the case of a phonon incident from a �particle-type� su-
perfluid Sp on a Mott-insulator MI �cf. Fig. 1�b��, the wave
functions locally assume the form

�S
��y� = �s

ks
�

�y� + rss�s
−ks

�

�y� + rms�m
−km

�

�y� ,

�MI
� �y� = �ps�p

kp
�

�y� + �hs�h
kh

�

�y� , �2�

with �X
	k�y� denoting plane-wave functions of type �1� with

constant wave vector 	k. The scattering amplitudes �ps
�transmitted particle�, �hs �transmitted hole�, rss �reflected
sound�, and rms �reflected massive mode� are obtained from
the continuity conditions across the interface, �S

��0�
=�MI

� �0� and �y�S
��0�=�y�MI

� �0�.

In order to fully characterize the Sp-MI boundary, one has
to determine the 4
4 transfer matrix relating phonon and
massive modes propagating to the left and right through the
superfluid Sp with the particle and hole modes propagating to
the left and right through the Mott insulator, requiring the
solution of four scattering problems of the above type �Eq.
�2�� �the corresponding task has to be solved in order to
describe the interface between a hole-type superfluid Sh and
a Mott insulator�. In the following, we concentrate exclu-
sively on the scattering properties at the interface where the
superfluid order parameter � vanishes; this guarantees the
solvability of the matching conditions at the boundary. As
our final result, we present: �i� simple analytical expressions
for the scattering coefficients at small hopping t→0 and near
the critical value tc at the tip of the Mott-insulator lobe, as
well as numerical results for two cases in between; and �ii�
the behavior of the heat conductivity � as a function of the
model parameters and the temperature T.

The body of the paper is organized as follows. In Sec. II,
we derive the elementary excitations in the vicinity of the
Mott-insulating regions of the Bose-Hubbard model. We
briefly review the mapping to a spin-1 problem10 before dis-
cussing the spinor structure and symmetry properties of the
wave functions. Section III is devoted to the calculation of
the scattering coefficients for a superfluid-Mott-insulator in-
terface, and the heat conductivity through a Mott barrier is
determined in Sec. IV. We summarize our results and con-
clude in Sec. V.

II. EXCITATIONS

In this section, we first derive the excitations of the
strongly correlated superfluid and the Mott-insulating phase
and exploit the time-reversal symmetry of the problem to
obtain a well-suited set of spinor wave functions. For the
reader who is less interested in the technical details, the en-
ergies ��X�k� in Eqs. �4� and �5�, the spinor wave functions
X�k� in Eqs. �6� and �7�, and their time-reversal invariant
combinations �Eq. �12�� represent the main result of this sec-
tion and Table I provides a physical interpretation of the

TABLE I. Physical interpretation of the four-spinor and its simi-
larity to the Dirac spinor. In both cases, we deal with two species of
“particles:” the particle and hole excitations discussed here corre-
spond to spin-up/down electrons in the Dirac equation. The role of
antiparticles in the Dirac spinor is played by ground-state fluctua-
tions in the present context: the antiparticle of a particle is a fluc-
tuation with a “missing” particle in the gs and similar for the hole.
Hence the top and bottom entries are both particle type �creation of
particle and destruction of a hole�, while the two middle entries are
both hole type �creation of a hole and destruction of a particle�.

Four-spinor Microscopic interpretation Dirac



t1,k
†

t−1,k
†

t1,−k

t−1,−k

�
Create particle e− , ↑

Create hole e− , ↓
Destroy particle fluctuation in gs e+ , ↑

Destroy hole fluctuation in gs e+ , ↓
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four-spinor components.
We find the dispersion and eigenfunctions of quasiparticle

excitations of the Bose-Hubbard model following the proce-
dure described in detail in Ref. 10. Starting with the Bose-
Hubbard Hamiltonian �the bosonic operators ai create par-
ticles in Wannier states at site i, �ni=ai

†ai−n0 measures the
density from a mean density n0, t is the hopping energy, U
accounts for the on-site interaction, �� is the chemical po-
tential controlling the particle number, and Vi accounts for
the harmonic confinement�,

H = − t�
i,j�

ai
†aj +

U

2 �
i

��ni�2 − �
i

��� − Vi��ni, �3�

we first consider a homogeneous situation with Vi�0 and
truncate the bosonic Hilbert space to a site basis with three
local states �0�i, �	1�i. The state �0�i refers to n0 bosons on
site i, while the states �	1�i include one more �less� particle.
Within this restricted space, we assume a trial wave function
for the ground state ���=�i��i�, where

��i� = cos���0�i + sin���sin����+ 1�i + cos����− 1�i� .

Minimizing the variational energy �var= ��HBH��� with re-
spect to �=� /4−� and subsequently expanding �var in the
order parameter �= ��ai���=�n0 /2 sin�2�, we obtain
�var�a�2+b�4 /2. To simplify expressions, we assume large
filling with �n0+1��n0. With the critical hopping
tc=U /8n0, we find for the order parameter close to the
upper �Sp-MI� and lower �Sh-MI� phase boundaries
��c

	= 	U�1− t / tc /2 the result ���2=�1− t / tc���
	 / t, where

���
	 =��c

		��.
The calculation of the excitations above the mean-field

ground state ��� involves a spin-wave analysis in a slave
boson description; the ground state in this effective pseu-
dospin 1 formalism defines the direction of the magnetic
order, while the remaining two degrees of freedom provide
the excitations. For �→0, the result can be expressed as a
4
4 matrix Hamiltonian H=�mnTm

† HmnTn with four-spinor
operators T= �t1,k

† , t−1,k
† , t1,−k , t−1,−k� describing particle and

hole creation and destruction above a mean-filling n0 �cf.
Table I� �the operators t	1,i

† act on the vacuum states
�vac�i and relate to the bosonic operators ai

† via
t	1,i
† = �ai

†�n0	1 /��n0	1�!�.
The diagonalization via a Bogoliubov transformation pro-

vides the dispersions �we measure wave vectors k in units of
1 /a, with a the lattice constant�

��p�h��k� =
U

2
�1 − �t/tc�cos�k� � �� �4�

in the Mott insulator and

��s�m��k� = 4tn0��s�m�
2 − �s�m�

2 �
k→0�ck ,

�m
� �5�

in the superfluid phase for �→0 at t� tc, where

�s = �2/�2 − t/tc� − cos�k��/2, �m = 2tc/t + �s,

�s = − �m = t cos�k�/�2tc − t� .

The sound velocity c of the phonon is c
=�4Utn0 / �2tc / t−1�, and the gap �m of the massive �or am-
plitude� mode is given by �m=U�1− t / tc. At the Sp-MI in-
terface, the particle excitation in the Mott insulator trans-
forms into the �particle-type� sound mode in Sp, while the
hole excitation in the Mott insulator transforms to the �hole-
type� massive mode in Sp. Correspondingly, the bottom of
the hole branch in the Mott insulator matches up with the gap
�m of the massive �hole-type� mode in Sp, while the bottom
of the particle branch in the Mott insulator goes to zero. The
use of Eq. �1� within an inhomogeneous superfluid phase
requires generalization of the result in Eq. �5� to finite values
of �, which provides the dependence on �� away from ��c

	

and hence on the local potential V�y�. Within the Mott re-
gion, the particle and hole spectra undergo a simple shift
	�� �cf. Eq. �4��, with a corresponding simple dependence
on the smooth potential V�y�.

The spinor eigenstates in the Mott insulator are

pk = �
A�k�

0

0

B�k�
� and hk = �

0

− A�k�
− B�k�

0
� , �6�

with the coefficients

A�k� = cosh�atanh��t/tc�cos�k�/�2 − �t/tc�cos�k���/2� ,

B�k� = sinh�atanh��t/tc�cos�k�/�2 − �t/tc�cos�k���/2� ,

providing the “dressing” of a particle �with amplitude A in
pk� by missing hole-type fluctuations �with amplitude B� in
the ground state �and vice versa for hk� and fulfill the nor-
malization condition.

The spinor eigenstates in the particle-condensed super-
fluid phase Sp are

sk
p = �

− �+As�k�
�−As�k�

− �+Bs�k�
�−Bs�k�

� and mk
p = �

�−Am�k�
�+Am�k�
�−Bm�k�
�+Bm�k�

� , �7�

with the coefficients

As�m� = cosh�atanh��s�m��k�/�s�m��k��/2� , �8�

Bs�m� = sinh�atanh��s�m��k�/�s�m��k��/2� . �9�

Furthermore, �	= �cos�f�t��	sin�f�t��� /�2 with f�t�
=arctan�2�tc / t��1− t / tc�. The eigenstates for Sh are obtained
by replacing

�+ ↔ �−. �10�

The nature of these excitations is easily understood in
the limits t→0 and t→ tc. For t→0, the coefficients
A ,As�m�→1 and B ,Bs�m�→0, telling us that the ground state
turns into a classical one devoid of fluctuations �cf. Table I�.
The excitations �Eq. �6�� in the Mott phase combine particles
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with absent hole fluctuations and holes with absent particle
fluctuations and hence are of particle and hole types, respec-
tively. With �+→1 and �−→0 the weights are set differ-
ently in the superfluid phase; here, the excitations involve
particles dressed with holes and holes dressed with particles,
reflecting the collective nature of these excitations. Crossing
the boundary ��c

+ into the particle-type superfluid Sp, the
particle mode of the Mott insulator condenses, imprinting the
predominant particle nature onto the sound mode �the
gapped hole mode goes over to the massive �amplitude�
mode in the superfluid�.

For t→ tc, the coefficients A ,As�m�→� and B ,Bs�m�→�;
the excitations exploit the strong fluctuations in the ground
state but keep their particle and hole character in the Mott
insulator. With �	→1 /�2, both sound and massive modes
have a mixed particle-hole character and draw large weights
from the ground-state fluctuations.

In the next section, we will have to match the spinor wave
functions and their derivatives, providing us with eight con-
ditions for only four unknown scattering coefficients. In or-
der to eliminate the additional spurious conditions, it is con-
venient to exploit the symmetry under time reversal and we
introduce the time-reversal operator

T = C� 0 �0

�0 0
	 , �11�

where C denotes the action of complex conjugation and �0 is
the identity matrix in two dimensions. The form of T can be
inferred from the behavior of ai under time reversal and the
relations between the operators ai and ti,0 , ti,	1. In addition to
the above spinors X=p ,h ,s ,m, we define the four linearly
independent eigenvectors TX. For the situation with unbro-
ken T invariance discussed here,16 it is convenient to define
the new states,

Xk
	 = �Xk � iTXk�/�2. �12�

These form a basis of T representations and are multiplied
with 	i under the operation T. Without loss of generality, we
choose to work with the “+” eigenstates and drop the super-
script in the following.

With these spinors at hand, we are now in the position to
describe inhomogeneities. For piecewise constant “poten-
tials,” we can use plane-wave-type left and right moving
spinor wave functions,

�X
	kX

�

�y� = ei�����/4e	ikX
� yXkX

� , �13�

and combine them into the scattering states defined in Eq.
�2�. For slowly varying parameters �“potentials”�, the states
�Eq. �12�� determine the spinor structure in Eq. �1�.

III. SCATTERING COEFFICIENTS

Next, we discuss a specific situation, the scattering of a
phonon on a Mott-insulator boundary, and determine the
scattering coefficients by matching the wave functions �Eq.
�2�� at the boundary between the superfluid and the insulat-
ing region. The scattering state of Eq. �2� describes a phonon

excitation incident from a particle-type superfluid Sp onto a
Mott insulator �cf. Fig. 1�. These excitations are relevant in
an experiment where a density perturbation is applied to the
middle of the trap;17 while one has to describe the density
perturbation by a wave packet of phonons, here, we only
discuss the scattering properties of plane-wave excitations as
the generic building block. Imposing the continuity condi-
tions across the Sp-MI interface, we obtain the scattering
coefficients rss, rms, �ps, and �hs; only the first two spinor
elements are relevant as the second two satisfy the matching
conditions automatically due to T invariance. In the follow-
ing, we discuss these coefficients in the limiting cases t→0,
tc and illustrate their behavior at intermediate values of t in
Fig. 2. Furthermore, here, we restrict the discussion to those
modes propagating in the superfluid as well as in the Mott-
insulator region; in the next section, where the heat transport
through a finite Mott region is discussed, the contribution of
evanescent modes has to be considered as well.

For t→0, a sound mode incident from Sp can be reflected
as a sound mode or transmitted into the Mott insulator as a
particle excitation; hence, the coefficients connecting to
propagating scattered modes are rss and �ps; given the energy
� of the incident phonon mode, they can be conveniently
expressed through the wave vectors ks

� and kp
� of the sound

and particle excitations involved,

rss��� � i
kp

� − ks
�

ks
� + kp

� + O��t/tc�2� ,

�ps��� � −
2ks

�

ks
� + kp

��1 −
t

4tc

cos�ks
��

1 − cos�ks
��
	 + O��t/tc�2�

�14�

�the coefficients rms and �hs describe scattering into evanes-
cent modes�. To leading order in t / tc, we recognize the stan-
dard expressions for the one-dimensional barrier problem
where the reflection and transmission amplitudes can be ex-
pressed in terms of momentum ratios. This result comes
about since, for t=0, the two phases, Sp and the Mott insu-
lator, are essentially identical. However, for the current
setup, the height of the “barrier” is not a free parameter due
to the generic nature of the interface; the result then is deter-
mined by the dispersions at the boundary. For a small but
finite hopping t / tc, the Mott insulator remains essentially un-
changed, while the bosons in the superfluid exploit the ki-
netic energy. This leads to a reduced transmission due to the
wave-function mismatch at the boundary, as reflected by the
term �t / tc in �ps.

Next, we discuss the situation near the tip of the Mott
lobe; in order to formulate the results for t→ tc, we first
define the reduced distance �t=1− t / tc�0 from the tip of the
Mott lobe and the coherence functions

f	�k� = �A�k� 	 iB�k���t=tc
. �15�

While the phases arg�f	�k�� run from arg�f	�0��= �� /4 to
arg�f	����= 	 acos�1 /�3+1 /�6�, both moduli diverge at
k→0, reflecting the softening of all modes at the tip of the
Mott lobe; however, the ratio �f+�k� / f−�k��2�1 remains fi-
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nite. Away from k→0 the moduli of f	�k� are well behaved.
To leading order in �t we obtain

rss��� � i
kp

� − ks
�

kp
� + ks

� + O��t�, rms��� � O��t� ,

�ps��� � −
�2ks

�

kp
� + ks

�� f−�ks
��

f+�kp
��

+
f−�ks

��
f−�kp

��
��t	 + O��t� ,

�hs��� � −
�2ks

�

kh
� + ks

�� f−�ks
��

f+�kh
��

−
f−�ks

��
f−�kh

��
��t	 + O��t� . �16�

For �t→0, we have ks
��kh

� �kp
�, the coherence factors are

approximately unity, and we again recognize the typical re-
sult for a simple barrier. This time, however, the particle and
the hole branches are degenerate and are transmitted equally
to leading order, explaining the factor �2. Furthermore, the
massive mode is orthogonal to the sound mode and does not
contribute in leading order. Going to nonzero �t, the super-
fluid develops “particle” nature, leading to an increase �re-
duction� in �ps ��hs�.

The behavior of the scattering coefficients for intermedi-
ate values of t / tc is shown in Fig. 2. The coefficients are
given for an energy �=��s��� /4 allowing for a comparison
at different values of t / tc. Note that for this energy, the hole
and massive modes become nonpropagating for t / tc�0.971.
The corresponding density of states effect is responsible for
the irregular behavior around t / tc�0.971. At small t / tc, the
approximations �Eq. �14�� are in good agreement with the
exact values; the same is true near the tip of the Mott lobe,
where the coefficients �Eq. �16�� agree well with the exact

numerical values. Here, however, the close vicinity of the
point where the massive mode and the hole turn evanescent
spoils the applicability of the analytical results much faster.

Given the results above, we note the following generic
trends: Scattering coefficients relating modes of equal type,
e.g., particle-type sound in the Sp and particle excitations in
the Mott insulator are large, while scattering between un-
equal modes, e.g., particle-type sound in the Sp and hole
excitations in the Mott insulator is suppressed. Furthermore,
the energy-dependent point on the t / tc axis where the mas-
sive and hole modes turn evanescent controls the breakdown
of the approximate formulas �14� and �16�. The same state-
ments hold for the respective cases of an incoming massive
mode and the inverted situations at the lower boundary of the
Mott lobe, i.e., with initial states in Sh.

IV. HEAT CONDUCTIVITY

As an application, we calculate the transport of heat
through a Mott-insulating layer within a wedding cake struc-
ture. The derived heat conductivity � provides insight into
the thermalization process when the lattice potential is
ramped up,11 and we quantify to what extent two superfluid
shells are in thermal contact through the Mott layer. In order
to calculate �, we consider the heat current18

QE = �
�,�
� d�N����v�����g��,T������2, �17�

where the sum is running over input ��� and output ���
channels. In Eq. �17�, N���� is the density of states in the
input channels �, v���� is the velocity associated with the
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FIG. 2. �Color online� Scattering coefficients for an incoming sound mode at an energy �=��s��� /4. �a� For all values of t / tc. The full
lines show the exact values, while the dash-dotted line is the approximate value from Eq. �14�. �b� Comparison between the exact and
approximate values for rss. �c� All coefficients around the “critical” value t�0.971 where for �=��s��� /4 the hole and massive modes
become exponentially damped. Note that values of the scattering coefficients larger than 1 are not in contradiction with particle conservation
as these excitations do not have a well-defined particle character. �d� For values t� tc the dash-dotted results from Eq. �16� again describe
the exact solutions well.
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excitations at energy � in the output channels �, and we
integrate over all energies �. The Bose-Einstein distribution
g�� ,T�= �exp�� /kBT�−1�−1 controls the occupation of the
bosonic modes, and ��� are the transmission amplitudes con-
necting input and output channels. The linear-response ex-
pression �17� describes the situation close to equilibrium. In
a real experiment, the initial state after ramping of the optical
potential may be far away from the bosonic equilibrium dis-
tribution g�� ,T�. Nevertheless, the calculation of the linear-
response result �Eq. �17�� provides some generic insights into
the behavior of the system which applies to such a situation
as well.

It is instructive to calculate the maximal heat conductivity
of a homogeneous Mott region. For temperatures higher than
all energy scales in the problem �the repulsion U�, but lower
than the band gap to the next Bloch band, the heat conduc-
tivity is finite and given by

��
hom = �

�=p,h
�

0

�/a dk

�/a
v��k�����k��Tg��,T � U�

=
Ua

�
kB��1 + t/tc − �1 − t/tc� , �18�

where we explicitly accounted for the lattice constant a.
From Eq. �18� we learn that the coefficient � describes the
transport of entropy “kB“ with velocity Ua /�. Below, we
take

�ref = ��
hom�t → tc� = �2

Ua

�
kB �19�

as our reference value for the heat conductivity.
We calculate the heat current �Eq. �17�� from one super-

fluid shell, point A in Fig. 1�a�, to point B in the next shell
and take the derivative with respect to the temperature T to
obtain ��T� �cf. Fig. 5�. The input channels � are given by
the phonons and massive particles impinging onto the Mott-
insulating phase at point A, i.e., from the particlelike super-
fluid Sp. The output channels on the other side of the insu-
lating region are the corresponding modes in Sh.

To obtain the transmission amplitudes ���, we apply a
transfer matrix formalism15 to divide the problem into three
parts: the scattering across the interface between the super-
fluid Sp and the Mott region, point A in Fig. 1�a�, the propa-
gation within the Mott layer, and the scattering at the second
interface connecting the Mott insulator and the superfluid Sh
�cf. point B in Fig. 1�a��. The scattering at the two interfaces
is handled as described in Sec. III above; in addition, scat-
tering amplitudes into and from evanescent modes now have
to be accounted for.

To describe the transfer from the superfluid phase into the
Mott insulator and vice versa, we match the wave functions
�Eq. �13�� and their derivatives at the boundary �placed at
y=0�: we define the wave functions

�MI�y� = Pr�p
k�y� + Pl�p

−k�y� + Hr�h
k�y� + Hl�h

−k�y� ,

�S�y� = Sr�s
k�y� + Sl�s

−k�y� + Mr�m
k �y� + Ml�m

−k�y� ,

and impose the matching conditions �MI�0�=�S�0� and
�y�MI�0�=�y�S�0� for the two first components; the condi-
tions for the other two components then are fulfilled auto-
matically due to T symmetry. The subscripts l and r denote
right- and left-moving excitations, respectively. This proce-
dure provides us with four relations connecting the four am-
plitudes on one side of the interface with the four on the
other. Solving for the coefficients Pl�r� and Hl�r�, we obtain
the transfer matrix MS-MI defined as



Pr

Pl

Hr

Hl

� = MS-MI

Sr

Sl

Mr

Ml

� . �20�

This transfer matrix depends on the type of interface, Sp or
Sh, connecting to the Mott layer; correspondingly, we denote
the two different matrices by MS-MI

p�h� . Note that the four-
dimensional character of Eq. �20� is due to the restriction to
the “+”sector of T; in general, one expects the transfer matrix
to act on a vector space of twice the dimension of the spinor.
However, the matrix elements connecting the two sectors
“+” and “−” vanish for a T-symmetric system.

The new task to analyze is the propagation of particle and
hole excitations through the Mott region 0�y�L as de-
scribed by the transfer matrix



Pr�y = L�
Pl�y = L�
Hr�y = L�
Hl�y = L�

� = MMI

Pr�y = 0�
Pl�y = 0�
Hr�y = 0�
Hl�y = 0�

� . �21�

This task requires the evaluation of the WKB phases �be-
tween arbitrary points a and b�

�a,b
p�h� = �

a

b

dxkp�h�
� �x� �22�

of Eq. �1� in the presence of an inhomogeneous potential
V�y�. Attention has to be paid to properly treat the classical
turning points where the quasiclassical approximation �Eq.
�1�� breaks down; Fig. 3 illustrates typical situations in the
present context, where particles and holes incident from the
left are stopped by the potential Veff

p�h� and turn evanescent or
tunnel as evanescent modes into the Mott insulator and turn
into propagating modes at the right of the Mott region. Such
turning points are dealt with in the standard way14 and lead
to additional scattering phases 	� /4 in the propagator.

Depending on the appearance of turning points in the par-
ticle and/or hole channel, the transfer matrix MMI assumes
different forms. The simplest case is realized near the tip of
the Mott lobe, where particle and hole modes can propagate
unhindered through the Mott region �cf. Fig. 4�. In this case,
the matrix is diagonal and multiplies each component of the
four-spinor with appropriate phase factors,
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MMI =

ei�0,L

p
0 0 0

0 e−i�0,L
p

0 0

0 0 ei�0,L
h

0

0 0 0 e−i�0,L
h
� = �mMI

p 0

0 mMI
h 	 .

The appearance of a turning point in the particle �hole� chan-
nel renders the 2
2 block matrix mMI

p �mMI
h � describing par-

ticle �hole� propagation nondiagonal; note that particles
�holes� then are reflected but never converted into one an-
other. Assuming a classical turning point at rcl �cf. trajectory
�p in Fig. 3�, the transfer matrix for a particle excitation
assumes the form

mMI
p = � 1

2ei�0,L
p −i�/4 1

2e−i�0,rcl

p +i�rcl,L
p +i�/4

ei�0,rcl

p −i�rcl,L
p +i�/4 e−i�0,L

p −i�/4 	 .

The equivalent expression for the hole excitation �trajectory
�h in Fig. 3� reads as

mMI
h = � ei�0,L

h +i�/4 1
2e−i�0,rcl

h +i�rcl,L
h −i�/4

ei�0,rcl

h −i�rcl,L
h −i�/4 1

2e−i�0,L
h +i�/4 	 .

Note that due to particle-hole symmetry, the turning points
rcl are the same for particles and holes. The “phases” �a,b

p�h�

have to be calculated numerically. The total transfer matrix,
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FIG. 3. �Color online� Sketch of a scattering event of an incoming phonon from Sp. �a� The incident sound mode is transformed into a
particle and a hole with amplitudes �sp and �sh, respectively. Inside the Mott layer, the particle propagates until it hits the potential, where
it is either reflected or tunnels under the barrier. The hole emerges from under the barrier and propagates to the other end of the layer. At the
boundary to Sh, both modes are converted into the modes of the superfluid with the corresponding amplitudes. �b� The same situation with
a higher energy of the incoming sound mode that allows for undamped propagation through the Mott region.
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FIG. 4. �Color online� Left: sketch of the local excitation spectra at different points A ,a ,b ,c ,B �columns� in the inhomogeneous system
for three different values of the hopping amplitude at t / tc=0.9,0.78,0.25 �rows�. Holelike spectra are dashed; particlelike spectra are solid
lines. Right: local phase diagram with Mott-insulating and superfluid regions depending on the chemical potential ��i and the hopping t / tc.
The blue �light gray� shaded area of the Mott lobe corresponds to values of t / tc for which the hole at point a has spectral overlap with the
holelike spectra at c, allowing for undamped propagation in the energy window given in blue �light gray� on the left. The red �dark gray�
shaded area of the Mott lobe marks values of t for which the modes in the superfluid have mutual spectral overlap for a nonvanishing range
of energy as shown on the left. For values t� t̃, the crossed terms do not contribute �phonon↔massive mode� to the heat conductivity �see
text�.
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connecting the two superfluids on either side of the Mott
insulator, is given by

Mtot = �MS-MI
h �−1MMIMS-MI

p . �23�

We obtain the scattering matrix S by solving the linear equa-
tion



Sout

h

Sin
h

Mout
h

Min
h
� = Mtot


Sin
p

Sout
p

Min
p

Mout
p
� �24�

for the amplitudes of the outgoing excitations Sout
p , Mout

p , Sout
h ,

and Mout
h . For the heat conductivity, we are only interested in

the transmission amplitudes connecting the channels of in-
coming phonons and massive modes from Sp to the outgoing
excitations in Sh. Within this subspace the scattering matrix
reads as

� Sout
h

Mout
h 	 = S� Sin

p

Min
p 	 = � �ss �sm

�ms �mm
	� Sin

p

Min
p 	 , �25�

and provides us with the explicit form of the scattering am-
plitudes ��� appearing in the expression for the heat current
�Eq. �17��.

The density of states N���� and velocity v���� derive from
the dispersion relations �s�m� in Eq. �5�. In one dimension,
these quantities are related via vs�m�=1 /Ns�m���� and hence
only in processes where the phonon and massive mode chan-
nels are mixed with ���; there appears a ratio
Ns�m���� /Nm�s����, otherwise all density of states effects can-
cel out.

Next, we identify those regions in the Mott lobe where we
expect a large value of �. Figure 4 shows the evolution of the
spectra upon crossing the Mott insulator region, starting with
sound and massive modes in the particle-type superfluid Sp at
point A right at the interface, the swap of particle- and hole-
type branches within the Mott insulating regime with a po-
tential rising approximately linearly with distance; see dia-
grams “a,” “b,” and “c” in Fig. 4, and the interchanged
massive and sound modes in the hole-type superfluid Sp at
point B, again right at the interface. Following the evolution
of the spectra from the tip of the Mott lobe at t= tc down to
t=0, various regimes can be identified where transport is
favored, either via full propagation through the Mott region
or via conservation of the particle/hole nature of the excita-
tion along the trajectory. At large values of t close to the tip
of the lobe an appreciable part of the particle and hole
branches overlaps, allowing these excitations to propagate
through the Mott insulator without damping. This overlap
terminates when the bottom of the hole band lines up with
the top of the particle band ���p�� /a�=��h�0�; cf. Eq. �4�
and diagram “a” in Fig. 4�, defining the special value t�

= �4 /5�tc. Another relevant point is t̃, where the massive and
sound modes stop overlapping in the superfluid; see diagram
“a” in Fig. 4. Comparing the bottom of the massive mode at
k=0 with the top of the sound mode at k=�, we find that this
overlap persists as long as t� t̃ with t̃= �3−�5�tc; and we
have �m�W�, where Ws=��s�� /a� denotes the width of the

sound mode in Sp. In this situation, the particle-type modes
in the left �sound� and right �massive� superfluids overlap
�and vice versa for the hole modes� and large transmissions
at the boundaries enhance the contribution of these modes to
�. Finally, for t� t̃, propagation through the Mott region is
always damped and excitations have to be converted be-
tween particle and hole types; hence, only direct terms
���ss�2 �particle-type sound is converted to hole-type sound�
and ���mm�2 �hole-type Higgs is converted to particle-type
Higgs� contribute. Accordingly, the heat conductivity � natu-
rally splits into direct and cross terms, with the latter ones
contributing with large weight but only for t� t̃ where
Ws��m,

��T� = �dir�T� + ��Ws − �m��cross�T� , �26�

with

�dir = �
0

W�

d����ss�2
�g

�T
+ �

�m

Wm

d����mm�2
�g

�T
, �27�

�cross = �
�m

W�

d��� Ns���
Nm���

��ms�2 +
Nm���
Ns���

��sm�2� �g

�T
. �28�

For the direct terms, the initial and the final states are both
sound modes or both massive modes and the density of states
cancels against the velocity factor.

The expressions in Eqs. �27� and �28� have to be calcu-
lated numerically and provide the final result for the heat
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FIG. 5. �a� Heat conductivity ��T� for different values of
t �t=0.9,0.82,0.78,0.74tc, from the back to the front� for a Mott
layer of thickness L0=10a at t=0 �a denotes the lattice constant�.
The structure of ��T� for small T is dictated by the spectral gap in
the intermediate Mott region. For smaller values of t, where only
damped modes contribute to transport, the heat conductivity is ex-
ponentially suppressed and not shown here. �b� The dependence of
the maximal heat conductivity ��=��T�U /kB� on the hopping am-
plitude t displaying the qualitative change for t� t̃ in the plot, where
the strong suppression sets in. The change at t� is masked by a
scattering resonance in the intermediate t̃� t� t� regime.
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conductivity ��T� shown in Fig. 5 as a function of T /U for
different values of t / tc. The overall shape involves an expo-
nential suppression at small temperatures T, hinting to the
presence of an effective gap �eff and a saturation value �� at
large temperatures when all modes within the finite band-
width contribute to the transport. Furthermore, the transport
efficiency decreases with decreasing t, as is to be expected
on the basis of the above analysis; cf. Fig. 4.

Given the complexity of the result expressed through Eqs.
�27� and �28� and the simplicity of the final behavior of �, we
have attempted to extract a simple and useful expression in-
terpolating between the exponential rise and the saturation at
low and high temperatures. A phenomenological Ansatz with
a density of states N���=���−�eff� and a corresponding ve-
locity v0 provides us with the simple formula

��T� � kBv0��eff���eff

kBT
	2 exp��eff/kBT�

�exp��eff/kBT� − 1�2 , �29�

with x2 exp�x� / �exp�x�−1�2 �x→0→1, we find the velocity v0
parameter related to the saturation value of � at large tem-
peratures, ��=kBv0; the scaled function ���t� shown in Fig.
5�b� reproduces the expected qualitative behavior, with a
shoulder at t� t̃ and a suppression for t� t�. The transmit-
tance of the boundaries as well as scattering resonances
within the Mott layer �between the two boundaries to the
superfluids or between one such boundary and a classical
turning point� are all absorbed in the coefficient ��. Also, we
note that the band edges in the excitation spectra manifest
themselves in the densities of states and give rise to sharp
features in ��. These effects are masked in an experiment,
where the finite size of the superfluid and Mott-insulating
regions induces an uncertainty in the momenta of all excita-
tions, and we account for this smearing in our numerical
evaluation of Eqs. �27� and �28�.19

Close to the tip, where the conduction is dominated by
itinerant modes, the effective gap parameter �eff turns out to
be independent of the Mott layer thickness L and is approxi-
mately given by

�eff � tc − t + 0.32. �30�

The linear behavior in t of �eff has to be compared to the
evolution of the size of the maximal gap �m within the Mott
layer which has a square root dependence on 1− t / tc. The
different scaling suggests that the gap �eff plays the role of
an effective parameter describing the complex transport in-
volving all of the interfaces and the inhomogeneous Mott

layer and is not directly related to the spectral gap in the
insulating region. In the same way, the offset by �0.32 ef-
fectively accounts for the conversion of quasiparticles at the
phase boundaries. With the above choices for the two phe-
nomenological parameters v0 and �eff, we find excellent
agreement between the numerical data and the results of our
simple Ansatz. In the regime t� t̃, the effective gap depends
on the thickness L0 of the Mott layer �L0 is taken at t=0�. In
Fig. 5, we show the results for L0=10a. The slope of the
exponential decrease of �� for t� t̃ depends strongly on L0.
However, its significant suppression at L0=10a indicates that
already at this width, the superfluid layers are essentially
decoupled even at temperatures kBT�U.

V. CONCLUSIONS

Summarizing, we have developed a framework to address
the behavior of quasiparticle excitations in a strongly corre-
lated bosonic heterostructure. We have derived a set of first-
quantized spinor wave functions valid in the superfluid- and
Mott-insulating phases, have derived the scattering proper-
ties of a superfluid-Mott-insulator interface, and have calcu-
lated the heat conductance across a Mott region as an appli-
cation of our method.

For a phonon incident from a Sp onto a Mott insulator, we
find standard expressions for the scattering amplitudes de-
scribing the scattering at a potential barrier in the limits t
→0, tc, with the involved momenta determined by the non-
trivial bulk dispersions. Going away from the Mott-lobe base
and tip, the amplitudes pick up nontrivial corrections which
are easily found numerically.

In calculating the heat conductivity across a Mott layer in
a wedding cake structure, we have combined the scattering at
the two interfaces with the quasiclassical propagation
through the inhomogeneous Mott layer. We find that for a
Mott shell at moderately to large hopping, i.e., t�0.8tc, the
adjacent superfluid shells are in good thermal contact. For
small hopping below t̃, however, the Mott shells represent
practically infinite barriers. Implications of our findings on
the lattice ramping problem11 deserve further studies.
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